MARK SCHEME
Maximum Mark : 80

IMPORTANT NOTICE

Mark Schemes have been issued on the basis of one copy per Assistant examiner and two copies per Team Leader.

1(i) $2 a^{3}-7 a^{2}+7 a^{2}+16=0$ leading to $a^{3}=-8, \quad a=-2$ (ii) $\begin{aligned} & 2\left(-\frac{1}{2}\right)^{3}-7\left(-\frac{1}{2}\right)^{2}-14\left(-\frac{1}{2}\right)+16 \\ & =21 \end{aligned}$	[2] M1 A1 [2]	M1 for use of $x=a$ M1 for substitution of $x=-\frac{1}{2}$
2 (i) (ii) $\left(\begin{array}{llll} 6 & 3 & 1 & 2 \\ 3 & 2 & 4 & 3 \\ 2 & 5 & 5 & 0 \\ 1 & 2 & 2 & 7 \end{array}\right)\left(\begin{array}{l} 5 \\ 3 \\ 2 \\ 1 \end{array}\right)=\left(\begin{array}{l} 43 \\ 32 \\ 35 \\ 22 \end{array}\right)$	B1,B1 [2] B2,1,0 [2]	B1 for each matrix, must be in correct order -1 for each error
$\begin{gathered} 3 \quad 4(2 k+1)^{2}=4(k+2) \\ 4 k^{2}+3 k-1=0 \\ \text { leading to } k=\frac{1}{4},-1 \end{gathered}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ & {[4]} \end{array}$	M1 for use of ' $b^{2}-4 a c$ ' Correct quadratic equation M1 for correct attempt at solution A1 for both 1 values
$\begin{aligned} & 4(13-3 y)^{2}+3 y^{2}=43 \\ & \left(\text { or } x^{2}+\frac{(13-x)^{2}}{3}=43\right) \\ & 6\left(2 y^{2}-13 y+21\right)=0 \\ & \left(\text { or } 2\left(2 x^{2}-13 x+20\right)=0\right) \\ & (2 y-7)(y-3)=0 \\ & \left(\begin{array}{l} \text { or }(2 x-5)(x-4)=0 \\ y=3 \text { or } \frac{7}{2}\left(x=\frac{5}{2} \text { or } 4\right) \\ \left(\text { or } x=4 \text { or } \frac{5}{2}\left(y=\frac{7}{2} \text { or } 3\right)\right) \end{array}\right. \end{aligned}$	M1 A1 M1 A1,A1 [5]	M1 for eliminating one variable A1 for correct quadratic M1 for correct attempt at solving quadratic A1 for each correct pair
$\begin{gathered} 5 \text { (i) }(3+\sqrt{2})^{2}+(3-\sqrt{2})^{2}=22 \\ \mathrm{AC}=\sqrt{22} \end{gathered}$ (ii) $\tan A=\frac{3-\sqrt{2}}{3+\sqrt{2}}$ $\frac{(3-\sqrt{2})(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}=\frac{11-6 \sqrt{2}}{7}$		M1 for use of Pythagoras M1 for correct ratio M1 for rationalising

6 (i) $3 x^{2}-10 x-8=0$ $(3 x+2)(x-4)=0$ critical values $-\frac{2}{3}, 4$ $A=\left\{x:-\frac{2}{3} \leq x \leq 4\right\}$ (ii) $\begin{aligned} & B=\{x: x \geq 3\} \\ & A \cap B=\{x: 3 \leq x \leq 4\} \end{aligned}$	$\begin{array}{lr} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & \\ & {[3]} \\ \text { B1 } & \\ \text { B1 } & \\ & {[2]} \\ \hline \end{array}$	M1 for attempt to solve quadratic A1 for critical values B1 for values of x that define B. B1 for attempt to combine the sets correctly and correct use of notation
7 (i) $\quad{ }^{13} C_{8}=1287$ (ii) 7 teachers, 1 student : 6 6 teachers, 2 students ${ }^{7} C_{6} \times{ }^{6} C_{2}: 105$ 5 teachers, 3 students ${ }^{7} C_{5} \times{ }^{6} C_{3}: 420$ 531	$\begin{array}{lc} \hline \text { M1, } 19 \\ & {[2]} \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ & \\ \text { B1 } & \\ & {[4]} \end{array}$	M1 for correct C notation
8 (i) When $t=0, N=1000$ (ii) $\frac{\mathrm{d} N}{\mathrm{~d} t}=-1000 k \mathrm{e}^{-k t}$ when $t=0, \frac{\mathrm{~d} N}{\mathrm{~d} t}=-20$ leading to $k=\frac{1}{50}$ (iii) $500=1000 \mathrm{e}^{-k t}$ $t=-50 \ln \frac{1}{2}$ leading to 34.7 mins	B1 $[1]$ M1 B1 A1 $[3]$ M1 M1 A1 $[3]$	M1 for differentiation B1 for $\frac{\mathrm{d} N}{\mathrm{~d} t}=-20$ stated M1 for attempt to formulate equation using half life M1 for a correct attempt at solution
9 (i) $20 \times-2(1-2 x)^{19}$ (ii) $x^{2} \frac{1}{x}+2 x \ln x$		B1 for 20 and $(1-2 x)^{19}$ B1 for - 2 M1 for attempt to differentiate a product. B1 for $\frac{1}{x}$
(iii) $\frac{x\left(2 \sec ^{2}(2 x+1)\right)-\tan (2 x+1)}{x^{2}}$	M1 B1 A1 [3]	M1 for attempt to differentiate a quotient. B1 for differentiation of $\tan (2 x+1)$

$\begin{gathered} 10 \text { (i) } \frac{\mathrm{d} y}{\mathrm{~d} x}=9 x^{2}-4 x+2 \\ \text { at } P \operatorname{grad}=7 \\ \text { tangent } y-3=7(x-1) \end{gathered}$ 10 (ii) at $Q, 7 x-4=3 x^{3}-2 x^{2}+2 x$ leading to $3 x^{3}-2 x^{2}-5 x+4=0$ $\begin{aligned} & \quad(x-1)\left(3 x^{2}+x-4\right)-0 \\ & (x-1)(3 x+4)(x-1)=0 \\ & \text { leading to } x=-\frac{4}{3}, y=-\frac{40}{3} \end{aligned}$	M1 A1 M1 A1 [4] M1 B1,M1 M1 A1 [5]	M1 for differentiation and attempt to find gradient M1 for attempt to find tangent equation, allow unsimplified M1 for equating tangent and curve equations B1 for realising $(x-1)$ is a factor and attempt to factorise M1 for factorisation and attempt to solve quadratic A1 for both
$\begin{aligned} 11 \text { (a) } \begin{aligned} \tan \theta+ & \cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \\ & =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \\ & =\frac{1}{\cos \theta \sin \theta} \\ = & \operatorname{cosec} \theta \sec \theta \end{aligned} \end{aligned}$ $\begin{aligned} & \text { (b)(i) } \begin{aligned} \tan x & =3 \sin x \\ \frac{\sin x}{\cos x} & =3 \sin x \\ \sin x-3 \sin x \cos x & =0 \end{aligned} \end{aligned}$ leading to $\cos x=\frac{1}{3}, \sin x=0$ $x=70.5^{\circ}, 289.5^{\circ} \text { and } x=180^{\circ}$ $\begin{aligned} & \text { (ii) } 2 \cot ^{2} y+3 \operatorname{cosec} y=0 \\ & 2\left(\operatorname{cosec}^{2} y-1\right)+3 \operatorname{cosec} y=0 \\ & 2 \operatorname{cosec}^{2} y+3 \operatorname{cosec} y-2=0 \\ & (2 \operatorname{cosec} y-1)(\operatorname{cosec} y+2)=0 \\ & \text { leading to } \sin y=-\frac{1}{2}, y=\frac{7 \pi}{6}, \frac{11 \pi}{6} \end{aligned}$	A1 M1 M1 M1 A1,A1 [5]	M1 for attempt to get in terms of sin and \cos and attempt to get one fraction M1 for use of identity M1 for use of $\tan x=\frac{\sin x}{\cos x}$ and correct attempt to solve $\sqrt{ }$ A1 on their $x=70.5^{\circ}$ B1 for $x=180^{\circ}$ M1 for use of correct identity M1 for attempt to solve quadratic M1 for dealing with cosec

